
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Distance \& Displacement

Distance

- How far it is from point A to point B along the path traveled.

tannered (CB BY-SA 3.0)

Displacement

- The change in position of an object.
- Includes the direction
- The total displacement of an object is the sum of the individual displacements.
- Symbol: d

Example

\qquad

- A boy walks 4 km East then turns around \qquad and walks 1 km West.

What distance does he travel? \qquad
$4 \mathrm{~km}+1 \mathrm{~km}=\mathbf{5} \mathbf{~ k m}$
What is his displacement?

$$
\begin{aligned}
& d=d_{1}+d_{2} \\
& d=(4)+(-1) \\
& d=\mathbf{3} \mathbf{~ k m} \text { East }
\end{aligned}
$$

Example

\qquad

- A boy walks 4 m East, 2 m South, 4 m \qquad West and finally 2 m North.

What distance does he travel?

What is his displacement?
12 m
0 m

Speed \& Velocity

Speed

- How fast an object is moving.
average speed $=\frac{\text { distance }}{\text { time }}$

Velocity

- How fast an object changes its position. - includes direction average velocity $=\frac{\text { displacement }}{\text { time }}$

$$
\bar{v}=\frac{\Delta d}{\Delta t}
$$

Example

- A turtle leaves his house and moves 30 m
\qquad
\qquad North followed by 10 m South. The trip takes 20 s to complete. Calculate the \qquad speed and velocity of the turtle.

Speed	Velocity	
$\frac{\text { distance }}{\text { time }}$	$=\frac{30+10 \mathrm{~m}}{20 \mathrm{~s}}$	$\bar{v}=\frac{\Delta d}{\Delta t}$
$=$	$=\frac{30-10 \mathrm{~m}}{20 \mathrm{~s}}$	
	$=2 \mathrm{~m} / \mathrm{s}$	

Scalar \& Vector

Scalar

- A quantity that has magnitude (how big or how much)
- distance
- 100 m
- mass
- 70 kg

Vector

- A quantity that has both magnitude and direction
- displacement, d
- 25 m South
- velocity, v
- $30 \mathrm{~m} / \mathrm{s}$, North
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Scalar \& Vector	
Scalar - A quantity that has magnitude (how big or how much) - distance - 100 m - mass - 70 kg	Vector - A quantity that has both magnitude and direction - displacement, d - 25 m South - velocity, v - $30 \mathrm{~m} / \mathrm{s}$, North

Uniform Motion

- The object is moving with a constant velocity in a straight line.
- acceleration is equal to zero
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Acceleration

\qquad
\qquad

- The change in velocity divided by time
\qquad
average acceleration $=\frac{\text { change in velocity }}{\text { time }}$

$$
\bar{a}=\frac{\Delta v}{\Delta t}
$$

Example

\qquad

- A car starting from rest reaches a velocity \qquad of $20 \mathrm{~m} / \mathrm{s}$ North in 5 s . What is the average acceleration of the car?

$$
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{20-0}{5}=4 \mathrm{~m} / \mathrm{s}^{2} \mathrm{North}
$$

- Since velocity is speed plus direction, the velocity will change if the speed changes or the direction changes. \qquad
- Therefore, an object will accelerate if its speed changes or its direction changes.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- The direction of the acceleration depends on
- what direction the object is moving
\qquad
- how the speed is changing
- The general principle for determining the \qquad direction of acceleration is
- If an object is slowing down, then its \qquad acceleration is in the opposite direction of its motion
(a) Car is speeding up

(b)

(b) Car is slowing down

Examples

- Which direction is the acceleration?
- A car is speeding up while traveling North
- North
- A truck going forwards is slowing down
- Backwards
- A car is slowing down while traveling East
- West
\qquad

A truck is speeding up while going backwards

- backwards \qquad
\qquad

Summary

\qquad

- Distance
- Displacement \qquad
- Speed
- $\frac{\text { distance }}{\text { time }}$
- Velocity
- $\frac{\text { displacement }}{\text { time }}$
- Acceleration \qquad
- change in velocity

Unit Conversions

$$
\frac{k m}{h} \times \frac{1000}{3600}=\frac{m}{s}
$$

Example:

$$
50 \frac{\mathrm{~km}}{\mathrm{~h}} \times \frac{1000}{3600}=13.9 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- If an object is stationary (at rest), the position does not change.
- The graph is a flat line. \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

- A straight line (with a slope) represents constant speed.
- Positive slope is forwards.
- Negative slope is backwards.
- The velocity is the slope of the line.
- The steeper the slope, the bigger the velocity

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Accelerated motion appears curved

- Describe the motion
\qquad
\qquad
- Describe the motion

\qquad
\qquad
- Constant velocity is shown by a flat line. \qquad
- Positive values are moving forward.
- Negative values are moving backward. \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

| - Positive values |
| :--- | :--- |
| represent motion |
| in the positive |
| direction (forward). |\quad| - Negative values |
| :--- |
| represent motion in |
| the negative |
| direction (backward). |

\qquad

- The object is stationary when the velocity is equal to zero.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

